How to calibrate pressure gauges - 20 things you should consider (2024)

Posted by Heikki Laurila on Apr 05, 2017

How to calibrate pressure gauges - 20 things you should consider (1)

Pressure Gauge Calibration

20 things you should consider when calibrating pressure gauges

Pressure gauges are very common instruments in the process industry. As with any measurement device, pressure gauges need to be calibrated at regular intervals to assure they are accurate. There are many things to consider when calibrating pressure gauges. This article lists 20 things you should consider when calibrating pressure gauges.

Please download related free white paper by clicking the below picture:

How to calibrate pressure gauges - 20 things you should consider (2)

Content - The 20 things you should consider

The 20 things discussed in the article are the following:

1. Accuracy classes
2. Pressure media
3. Contamination
4. Height difference
5. Leak test of piping
6. Adiabatic effect
7. Torque
8. Calibration / mounting position
9. Generating pressure
10. Pressurizing / exercising the gauge
11. Reading the pressure value (resolution)

Remaining topics in the free white paper:

12. Number of calibration points
13. Hysteresis (direction of calibration points)
14. “Tapping” the gauge
15. Number of calibration cycles (repeatability)
16. Adjustment / correction
17. Documentation – calibration certificate
18. Environmental conditions
19. Metrological traceability
20. Uncertainty of calibration (TUR/TAR)

What is pressure?

Before we discuss each one of the things to consider when calibrating pressure gauges, let’s take a quick look into a few more basic concepts.

What is pressure? Pressure is the force that is perpendicular to the surface divided by the area it is effecting. So pressure equals force per area, or p = F / A.

There are a large number of different pressure units used around the world and this can be sometimes very confusing. The engineering unit for pressure, according to SI system, is Pascal (Pa), being a force of one Newton per one square meter area, 1 Pa = 1 N / m2. Since Pascal is a very small unit, it is most often used with coefficients, such as hecto, kilo and mega. A large number of different pressure units are being used around the world. For more information on pressure and different pressure units and their background, please see the blog post Pressure units and pressure unit conversion.

For an on-line pressure unit conversion tool, please visit the page Pressure unit converter.

Pressure types

Several different pressure types exist including gauge, absolute, vacuum, differential and barometric. The main difference of these pressure types is the reference point against which the measured pressure is being compared. Pressure gauges also are available for all of these pressure types. Also, compound gauges are available, including a combined scale for both positive gauge pressure and vacuum (negative gauge) pressure.

For more detailed information on different pressure types, please see post Pressure calibration basics – pressure types.

Pressure gauges

When talking about pressure gauges, it is normal to refer to analog pressure indicators which are provided with a pointer needle and a pressure scale. These are normally manufactured according to EN 837 or ASME B40.100 standard.

Often these kind of analog pressure gauges are built with a Bourdon tube, diaphragm or capsule. There is a mechanical structure that moves the pointer as pressure increases causing the pointer move across the scale.

Pressure gauges are divided into different accuracy classes that specify the accuracy of the gauge as well as other attributes. Available pressure ranges are typically divided in steps with coefficients 1, 1.6, 2.5, 4, 6 continuing into the next decade (10, 16, 25, 40, 60) and so on. The different gauge diameters (of scales) are typically 40, 50, 63, 80, 100, 115, 160 and 250 mm (1 ½, 2, 2 ½, 4, 4 ½, and 6 inches). More accurate gauges typically have a bigger diameter.

Pressure connectors are normally parallel pipe threads (G) according to ISO 228-1, or taper pipe threads (NPT) according to ANSI/ASME B1.20.1.

There are also digital pressure gauges that have a numeric pressure indication instead of an analog pointer. This article focuses on analog gauges, but most of the principles are valid for both.

Pressure gauges are commonly used in all industries and are a very common instrument to be calibrated. As with any process measurement device, it should be calibrated at regular intervals to assure that it is measuring correctly. Gauges being mechanical instruments, adds the risk for them to drift due to mechanical stress.

For more information on why you should calibrate instruments, please see the blog post Why calibrate?

For more information on how often instruments should be calibrated, please see post How often should instruments be calibrated?

The basic principle of calibration

If we simplify the principle of a pressure gauge calibration to its minimum, we can say that when we calibrate a pressure gauge, we provide a known accurate pressure input and read the indication on the gauge, and then document and compare these. The difference in the values is the error and the error should be smaller than the required accuracy for the gauge.

20 things you should consider

This section lists the 20 most common things you should consider when you are calibrating pressure gauges.

Back to top⇑


1 - Accuracy classes

Pressure gauges are available in many different accuracy classes. Accuracy classes are specified in ASME B40.100 (accuracy classes from 0.1 to 5 % range) as well as in EN 837 (accuracy classes from 0.1 to 4 % range) standards. The accuracy class specification most often being “% of range” means that if the accuracy class is 1% and if the scale range is zero to 100 psi, the accuracy is ± 1 psi.

Make sure you know the accuracy class of the gauge you are going to calibrate, as this will naturally specify the acceptable accuracy level, but it will also have other effects on the calibration procedure.

Back to top⇑

2 - Pressure media

When calibrating pressure gauges, the most common pressure media are gas or liquid. Gas is most often regular air, but in some applications, it can also be different gases, such as nitrogen. Most commonly, the liquid is water or oil. The pressure media during the calibration depends on the media that is used in the process that the gauge is connected to. Media also depends on the pressure range. Low pressure gauges are practical to calibrate with air/gas, but as the pressure range gets higher it is more practical and also safer to use liquid as the media.

Back to top⇑

3 - Contamination

While installed in a process, the pressure gauge uses a certain type of pressure media, this should be taken into account when selecting the media for the calibration. You should not use a media during the calibration that could cause problems when gauge is installed back to process. Also, the other way around, sometimes the process media could be harmful to your calibration equipment.

There can be dirt inside the gauge that can get into the calibration equipment and cause harm. With a gas operated gauges, you can use a dirt/moisture trap, but for a liquid operated gauge, you should clean the gauge prior to calibration.

One of the most extreme process situations is if the gauge is used in to measure the pressure of oxygen. If any grease goes into a high pressure oxygen system during the calibration of the gauge, it can be very dangerous and could cause an explosion.

Back to top⇑

4 - Height difference

If the calibration equipment and the gauge to be calibrated are at a different height, the hydrostatic pressure of the pressure media in the piping can cause errors. This normally is not an issue when gas is used as the media, as gas is light compared to liquid. But when liquid is used as media, the liquid in the piping will have a weight due hydrostatic pressure and can cause errors. The magnitude of the error depends on the density of the liquid and the difference in height, as the gravity is pulling the liquid inside the tubing. If it is not possible to have the calibrator and gauge at the same height, then the effect of height difference should be calculated and taken into account during the calibration.

An example of effect of hydrostatic pressure:

Hydrostatic pressure is calculated as follows:

Ph = ρ g h

Where:

Ph = hydrostatic pressure

ρ = density of liquid (kg/m3)

g = local gravity (m/s2)

h = height difference (m)

As on example: if water is the media (density 997.56 kg/m3), local gravity is 9.8 m/s2 and there is a 1 meter (3.3 feet) difference between the DUT and the reference equipment, this will cause an error of 9.8 kPa (98 mbar or 1.42 psi).

Note that depending on the pressure to be measured, the error caused by the height difference can be significant.

Back to top⇑

5 - Leak test of piping

If there are any leaks in the piping during the calibration, unpredictable errors can occur. Therefore, a leak test should be done prior to calibration. The most simple leak test is to pressurize the system and let the pressure stabilize for some time, and monitor that the pressure does not drop too much. Some calibration systems (pressure controllers) may be able to maintain the pressure even in case of a leak, if it has a continuous controller adjusting the pressure. In that case, it is difficult to see a leak, so the controller should be closed to enable a closed system for a leak test. Adiabatic effect should also always be taken into account in closed system, especially with gas a media, as explained in the next chapter.

Back to top⇑


6 - Adiabatic effect

In a closed system with gas as the pressure media, the temperature of the gas effects the volume of the gas, which has an effect to the pressure.

When pressure is increased quickly, the temperature of the gas will rise, and this higher temperature makes the gas to expand, thus having a bigger volume and higher pressure. When the temperature starts to cool down, the volume of the gas becomes smaller and this will cause the pressure to drop. This pressure drop may seem like a leak in the system, but it is actually caused by the adiabatic effect due to change in the gas temperature. The faster the pressure is changed, the bigger is the effect is. The pressure change caused by this effect will gradually get smaller as the temperature stabilizes.

So, if you change the pressure quickly, make sure you let it stabilize for a while before judging that there is a leak in the system.

Back to top⇑

7 – Torque force

Especially for torque sensitive gauges, don’t use excessive force when connecting pressure connectors to the gauge, as it may damage the gauge. Follow manufacturer’s instructions for the allowed torque force. Take the time to use proper tools, appropriate adapters and seals.

Back to top⇑

8 - Calibration / mounting position

Because pressure gauges are mechanical instruments, its position will effect to the reading. Therefore, it is recommended to calibrate the gauge in the same position as it is used in the process. Manufacturer’s specifications for the operation/mounting position should also be taken into account.

A typical specification for a mounting position is that a change of 5 degrees in position should not change the gauge indication more than half (0.5 times) of the accuracy class.

Back to top⇑

9 - Generating pressure

To calibrate a pressure gauge, you need to source the pressure applied to the gauge.

There are different ways to do that: you can use a pressure hand pump, a pressure regulator with a bottle or even a dead weight tester. A dead weight tester will provide a very accurate pressure and you don’t need a separate calibrator to measure the pressure, but dead weight tester is expensive, not very mobile, requires a lot of attention to use and it is sensitive to dirt.

It is more common to use a pressure calibration hand pump to generate pressure and an accurate pressure measurement device (calibrator) to measure the pressure. A pressure controller can also be used to supply the pressure.

Back to top⇑


10 - Pressurizing / exercising the gauge

Due to its mechanical structure, a pressure gauge will always have some friction in its movement, and may change its behavior over time, therefore you should exercise it before calibration. This is especially the case if the gauge has not been applied with pressure for a while. To exercise, supply the nominal max pressure and let it stay for a minute, then vent the pressure and wait a minute. You should repeat this process 2-3 times before starting to do the actual calibration cycle.

Back to top⇑

11 - Reading the pressure value (resolution)

The scale in analog pressure gauges have limited readability. It has major and minor scale marks, but it is difficult to accurately read the pressure value when the indicator is in between the scale marks. It is much easier to see when the needle is exactly at a scale mark. Therefore, it is recommended to adjust the input pressure so that the needle is exactly at an indication mark, and then record the corresponding input pressure. If you just supply a certain accurate input pressure and then try to read the indicator, it will cause errors due to limited reading accuracy.

Also, it is important to look at the indication perpendicular to the gauge scale. Many accurate gauges have a reflecting mirror along the scale, behind the needle pointer. This mirror helps you read it, and you should read it so that the mirror reflection of the needle is exactly behind the actual needle. Then you know that you are looking perpendicular/straight at the gauge.

Picture: Left gauge in the below picture is difficult to read accurately as the indicator is between scale marks, while the right one is easy to read since the applied pressure is adjusted so that pointer is exactly on scale mark:


How to calibrate pressure gauges - 20 things you should consider (3)


Picture: Many high accuracy pressure gauges are provided with a mirror along the scale, helping to view the gauge perpendicular, as the mirror image of the pointer is hidden behind the pointer, or with the help of the reflection of the pointer:

How to calibrate pressure gauges - 20 things you should consider (4)

Back to top⇑

Remaining topics

To prevent this blog post coming way too long, please download the white paper and read all the 20 topics from that.

The remaining topics not covered here include:

12 - Number of calibration points
13 - Hysteresis (direction of calibration points)
14 - “Tapping” the gauge
15 - Number of calibration cycles (repeatability)
16 - Adjustment / correction
17 - Documentation – calibration certificate
18 - Environmental conditions
19 - Metrological traceability
20 - Uncertainty of calibration (TUR/TAR)

Please download related free white paper by clicking the below picture:

How to calibrate pressure gauges - 20 things you should consider (5)

Related resources

Beamex products suitable for pressure calibration, including pressure gauge calibration:
https://www.beamex.com/calibrators/pressure-calibrators/

An online tool for pressure unit conversion on Beamex web site:Pressure unit converter

Please check out our new electric pressure pump Beamex ePG:

How to calibrate pressure gauges - 20 things you should consider (6)

Related blog posts:

  • Why calibrate?
  • How often should instruments be calibrated?
  • Calibration uncertainty for dummies
  • Pressure calibration basics – pressure types
  • Pressure units and pressure unit conversion
  • Metrological traceability in calibration
  • What is a documenting calibrator and how do you benefit from using one?

Back to top⇑

Topics

Pressure calibration pressure gauge

Discover more related content

Nov 29, 2023Is it a leak? - Understanding the adiabatic p...Is it a leak? - Understanding the adiabatic process in pressure calibration The adiabatic ...
Jun 22, 2021Pressure Calibration [eBook]In this blog post, we want to share a free educational eBook on Pressure Calibration and o...
Nov 18, 2016Pressure calibration basics – Pressure typesFigure 1. Pressure types On a regular basis, we receive customer questions about pressure ...
Mar 30, 2020Pressure Switch CalibrationPressure switches are very common instruments in the process industry, and various kinds o...
Nov 30, 2015How to calibrate a pressure switchUpdate March 2020: We have a newer blog post on pressure switches, please find it here: Pr...
Sep 21, 2016How to calibrate HART pressure transmittersA pressure transmitter is one of the most common instruments in a process plant. In order ...
Dec 10, 2015Calibrating a square rooting pressure transmi...We quite often receive questions regarding the calibration of a square rooting pressure tr...
Mar 21, 2022Understanding Pressure Calibrator Accuracy Sp...Comparing the accuracy specifications of pressure calibrators can be a challenging task be...
Apr 24, 2019Optimal Calibration Parameters for Process In...Many calibration technicians follow long-established procedures at their facility that hav...
Mar 20, 2018How to calibrate pressure instruments [Webina...In this blog post, I want to share with you a two-part webinar series titled “How to calib...

Written by

Heikki Laurila

Heikki Laurila is the Product Marketing Manager at Beamex. He started working for Beamex in 1988 and since then has worked in production, service, the calibration laboratory, as quality manager, produ...

Discussion

How to calibrate pressure gauges - 20 things you should consider (2024)

FAQs

Why should pressure gauges be calibrated? ›

Generally, new pressure gauges need to be calibrated often in order to establish their metrological stability. In many cases, new pressure gauges require initial calibration before the first use. Another reason for an unscheduled calibration is unexpected working conditions.

What should a properly calibrated pressure gauge read when it is open to the atmosphere? ›

Gauge pressure of the atmosphere is always zero. Looking at the pressure gauges I have around the house (steam locomotives, usually calibrated from 0 to 80 psi), all of them at atmospheric pressure read zero.

What are the calibration intervals for pressure gauges? ›

How often should a pressure gauge be calibrated? It is strongly advisable to calibrate pressure gauges once every 12 months.

Should pressure gauges be calibrated? ›

It is important to check your pressure gauge's calibration regularly. If this isn't done regularly, then you will have inaccurate readings that could lead to costly repairs or replacement of your equipment.

How is calibration done? ›

A calibration professional performs calibration by using a calibrated reference standard of known uncertainty (by virtue of the calibration traceability pyramid) to compare with a device under test. He or she records the readings from the device under test and compares them to the readings from the reference source.

How do you check the accuracy of a pressure gauge? ›

Connect the working gauge to the reference gauge i.e.; the calibrator or master gauge. Run the system and measure the readings on both the gauges. Compare both the readings. If the readings are the same, the gauges can be concluded verified.

How does a pressure calibration work? ›

Pressure calibration is the comparison of the output of a device used to measure pressure with that of another pressure measurement device, or pressure measurement standard. This usually involves plumbing the device under test (DUT) to the standard device and generating a common pressure in the measurement circuit.

How accurate is a gauge calibration? ›

A gauge with a span of 100 psi and an accuracy of ±1% of span will have a tolerance of ±1.0 psi at any point on the measurement scale. Precision: how close or dispersed the measurements are to each other and their repeatability.

What is gauge calibration? ›

Gauge calibration verifies and, if needed, restores the accuracy of a measuring instrument to proper working conditions. Periodic gauge calibration keeps the integrity of the readings and ensures proper, consistent measurements.

What is calibration in simple terms? ›

Calibration is the process of configuring an instrument to provide a result for a sample within an acceptable range. Eliminating or minimizing factors that cause inaccurate measurements is a fundamental aspect of instrumentation design.

How do I check my pressure gauge calibration certificate? ›

The calibration will be done in 6 measuring points proportionally distributed (including zero and maximum) in pressure rise, and 6 points in decent pressure. A numbered, dated and signed certificate will be issued with the device guaranteeing its accuracy. The certificate will be valid for 1 year.

What determines how often most gauges should be calibrated? ›

Frequency of use: How often you use your gages will also determine how much calibration they require. If you use your gages regularly, they will undergo more calibration shifts and drifts and require more frequent recalibration.

How do I know if my pressure gauge is accurate? ›

Some common signs your readings aren't correct include:
  1. Readings are too low or too high.
  2. The gauge isn't zeroing.
  3. The needle on your device is stuck.
  4. You're getting different readings when you use another gauge.
  5. Your gauge isn't working at all.

How do I know if my air pressure gauge is accurate? ›

1) You can check the air pressure in a tire with the gauge in question and then check the same tire with another gauge. If there is a significant difference in the readings (4 or more psi) between the two gauges one or both gauges may be inaccurate.

How do I know if my tire pressure gauge is accurate? ›

Joes Racing Products, Jaco, and Intercomp also offer accurate tire pressure gauges. You can test the accuracy of your gauge by bringing your vehicle to a mechanic and comparing it against their results.

How do you calibrate a digital BP monitor? ›

Typically, a blood pressure machine is calibrated once every 2 to 3 years. However, it is recommended to calibrate a blood pressure machine at least once a year. Store the machine properly: Storing your blood pressure monitor properly can significantly extend its life.

Top Articles
Latest Posts
Article information

Author: Allyn Kozey

Last Updated:

Views: 5737

Rating: 4.2 / 5 (63 voted)

Reviews: 86% of readers found this page helpful

Author information

Name: Allyn Kozey

Birthday: 1993-12-21

Address: Suite 454 40343 Larson Union, Port Melia, TX 16164

Phone: +2456904400762

Job: Investor Administrator

Hobby: Sketching, Puzzles, Pet, Mountaineering, Skydiving, Dowsing, Sports

Introduction: My name is Allyn Kozey, I am a outstanding, colorful, adventurous, encouraging, zealous, tender, helpful person who loves writing and wants to share my knowledge and understanding with you.