Brain-heart interaction: cardiac complications after stroke (2024)

1. Ay H, Koroshetz WJ, Benner T, Vangel MG, Melinosky C, Arsava EM, Ayata C, Zhu M, Schwamm LH, Sorensen AG. Neuroanatomic correlates of stroke-related myocardial injury. Neurology. 2006;66:1325–1329. [PubMed] [Google Scholar]

2. Oppenheimer SM. Neurogenic cardiac effects of cerebrovascular disease. Current opinion in neurology. 1994;7:20–24. [PubMed] [Google Scholar]

3. Tokgozoglu SL, Batur MK, Topcuoglu MA, Saribas O, Kes S, Oto A. Effects of stroke localization on cardiac autonomic balance and sudden death. Stroke; a journal of cerebral circulation. 1999;30:1307–1311. [PubMed] [Google Scholar]

4. Byer E, Ashman R, Toth LA. Electrocardiograms with large, upright t waves and long q-t intervals. American heart journal. 1947;33:796–806. [PubMed] [Google Scholar]

5. Samuels MA. The brain-heart connection. Circulation. 2007;116:77–84. [PubMed] [Google Scholar]

6. Tranmer Bruce I, Keller Ted S, Kindt Glenn W, Archer David. Loss of cerebral regulation during cardiac output variations in focal cerebral ischemia. Journal of Neurosurgery. 1992;77:253–259. [PubMed] [Google Scholar]

7. Cheshire WP, Jr, Saper CB. The insular cortex and cardiac response to stroke. Neurology. 2006;66:1296–1297. [PubMed] [Google Scholar]

8. van der Bilt IA, Hasan D, Vandertop WP, Wilde AA, Algra A, Visser FC, Rinkel GJ. Impact of cardiac complications on outcome after aneurysmal subarachnoid hemorrhage: A meta-analysis. Neurology. 2009;72:635–642. [PubMed] [Google Scholar]

9. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: The framingham study. Stroke. 1991;22:983–988. [PubMed] [Google Scholar]

10. Verdecchia P, Porcellati C, Reboldi G, Gattobigio R, Borgioni C, Pearson TA, Ambrosio G. Left ventricular hypertrophy as an independent predictor of acute cerebrovascular events in essential hypertension. Circulation. 2001;104:2039–2044. [PubMed] [Google Scholar]

11. Selvetella G, Notte A, Maffei A, Calistri V, Scamardella V, Frati G, Trimarco B, Colonnese C, Lembo G. Left ventricular hypertrophy is associated with asymptomatic cerebral damage in hypertensive patients. Stroke; a journal of cerebral circulation. 2003;34:1766–1770. [PubMed] [Google Scholar]

12. Petersen P. Thromboembolic complications in atrial fibrillation. Stroke. 1990;21:4–13. [PubMed] [Google Scholar]

13. Khechinashvili G, Asplund K. Electrocardiographic changes in patients with acute stroke: A systematic review. Cerebrovasc Dis. 2002;14:67–76. [PubMed] [Google Scholar]

14. Mosterd A, Hoes AW. Clinical epidemiology of heart failure. Heart. 2007;93:1137–1146. [PMC free article] [PubMed] [Google Scholar]

15. Yoshimura S, Toyoda K, Ohara T, Nagasawa H, Ohtani N, Kuwashiro T, Naritomi H, Minematsu K. Takotsubo cardiomyopathy in acute ischemic stroke. Ann Neurol. 2008;64:547–554. [PubMed] [Google Scholar]

16. van der Bilt IA, Hasan D, van den Brink RB, Cramer MJ, van der Jagt M, van Kooten F, Regtien JG, van den Berg MP, Groen RJ, Cate FJ, Kamp O, Gotte MJ, Horn J, Girbes AR, Vandertop WP, Algra A, Rinkel GJ, Wilde AA, Investigators S. Time course and risk factors for myocardial dysfunction after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2015;76:700–705. discussion 705–706. [PubMed] [Google Scholar]

17. Ghadri JR, Cammann VL, Napp LC, Jurisic S, Diekmann J, Bataiosu DR, Seifert B, Jaguszewski M, Sarcon A, Neumann CA, Geyer V, Prasad A, Bax JJ, Ruschitzka F, Luscher TF, Templin C, International Takotsubo R. Differences in the clinical profile and outcomes of typical and atypical takotsubo syndrome: Data from the international takotsubo registry. JAMA cardiology. 2016;1:335–340. [PubMed] [Google Scholar]

18. Frontera JA, Parra A, Shimbo D, Fernandez A, Schmidt JM, Peter P, Claassen J, Wartenberg KE, Rincon F, Badjatia N, Naidech A, Connolly ES, Mayer SA. Cardiac arrhythmias after subarachnoid hemorrhage: Risk factors and impact on outcome. Cerebrovascular diseases. 2008;26:71–78. [PMC free article] [PubMed] [Google Scholar]

19. Estanol BV, Marin OS. Cardiac arrhythmias and sudden death in subarachnoid hemorrhage. Stroke. 1975;6:382–386. [PubMed] [Google Scholar]

20. Junttila E, Vaara M, Koskenkari J, Ohtonen P, Karttunen A, Raatikainen P, Ala-Kokko T. Repolarization abnormalities in patients with subarachnoid and intracerebral hemorrhage: Predisposing factors and association with outcome. Anesthesia and analgesia. 2013;116:190–197. [PubMed] [Google Scholar]

21. Jangra K, Grover VK, Bhagat H, Bhardwaj A, Tewari MK, Kumar B, Panda NB, Sahu S. Evaluation of the effect of aneurysmal clipping on electrocardiography and echocardiographic changes in patients with subarachnoid hemorrhage: A prospective observational study. Journal of neurosurgical anesthesiology. 2016 [PubMed] [Google Scholar]

22. Lee M, Oh JH, Lee KB, Kang GH, Park YH, Jang WJ, Chun WJ, Lee SH, Lee IC. Clinical and echocardiographic characteristics of acute cardiac dysfunction associated with acute brain hemorrhage- difference from takotsubo cardiomyopathy. Circulation journal : official journal of the Japanese Circulation Society. 2016;80:2026–2032. [PubMed] [Google Scholar]

23. Hays A, Diringer MN. Elevated troponin levels are associated with higher mortality following intracerebral hemorrhage. Neurology. 2006;66:1330–1334. [PubMed] [Google Scholar]

24. Park HK, Kim BJ, Yoon CH, Yang MH, Han MK, Bae HJ. Left ventricular diastolic dysfunction in ischemic stroke: Functional and vascular outcomes. Journal of stroke. 2016;18:195–202. [PMC free article] [PubMed] [Google Scholar]

25. Milionis H, Faouzi M, Cordier M, D’Ambrogio-Remillard S, Eskandari A, Michel P. Characteristics and early and long-term outcome in patients with acute ischemic stroke and low ejection fraction. International journal of cardiology. 2013;168:1082–1087. [PubMed] [Google Scholar]

26. Kolin A, Norris JW. Myocardial damage from acute cerebral lesions. Stroke. 1984;15:990–993. [PubMed] [Google Scholar]

27. Prosser J, MacGregor L, Lees KR, Diener HC, Hacke W, Davis S, Investigators V. Predictors of early cardiac morbidity and mortality after ischemic stroke. Stroke. 2007;38:2295–2302. [PubMed] [Google Scholar]

28. Rauh R, Fischereder M, Spengel FA. Transesophageal echocardiography in patients with focal cerebral ischemia of unknown cause. Stroke; a journal of cerebral circulation. 1996;27:691–694. [PubMed] [Google Scholar]

29. LAVY S, YAAR I, MELAMED E, STERN S. The effect of acute stroke on cardiac functions as observed in an intensive stroke care unit. Stroke. 1974;5:775–780. [PubMed] [Google Scholar]

30. McDermott MM, Lefevre F, Arron M, Martin GJ, Biller J. St segment depression detected by continuous electrocardiography in patients with acute ischemic stroke or transient ischemic attack. Stroke; a journal of cerebral circulation. 1994;25:1820–1824. [PubMed] [Google Scholar]

31. Ay H, Arsava EM, Saribas O. Creatine kinase-mb elevation after stroke is not cardiac in origin: Comparison with troponin t levels. Stroke; a journal of cerebral circulation. 2002;33:286–289. [PubMed] [Google Scholar]

32. Hall TS, Hallen J, Krucoff MW, Roe MT, Brennan DM, Agewall S, Atar D, Lincoff AM. Cardiac troponin i for prediction of clinical outcomes and cardiac function through 3-month follow-up after primary percutaneous coronary intervention for st-segment elevation myocardial infarction. American heart journal. 2015;169:257–265. e251. [PubMed] [Google Scholar]

33. Apple FS, Steffen LM, Pearce LA, Murakami MM, Luepker RV. Increased cardiac troponin i as measured by a high-sensitivity assay is associated with high odds of cardiovascular death: The minnesota heart survey. Clinical chemistry. 2012;58:930–935. [PMC free article] [PubMed] [Google Scholar]

34. Kubo T, Kitaoka H, Okawa M, Yamanaka S, Hirota T, Baba Y, Hayato K, Yamasaki N, Matsumura Y, Yasuda N, Sugiura T, Doi YL. Combined measurements of cardiac troponin i and brain natriuretic peptide are useful for predicting adverse outcomes in hypertrophic cardiomyopathy. Circulation journal : official journal of the Japanese Circulation Society. 2011;75:919–926. [PubMed] [Google Scholar]

35. Bugnicourt JM, Rogez V, Guillaumont MP, Rogez JC, Canaple S, Godefroy O. Troponin levels help predict new-onset atrial fibrillation in ischaemic stroke patients: A retrospective study. European neurology. 2010;63:24–28. [PubMed] [Google Scholar]

36. Oras J, Grivans C, Bartley A, Rydenhag B, Ricksten SE, Seeman-Lodding H. Elevated high-sensitive troponin t on admission is an indicator of poor long-term outcome in patients with subarachnoid haemorrhage: A prospective observational study. Critical care. 2016;20:11. [PMC free article] [PubMed] [Google Scholar]

37. Bruder N, Rabinstein A. Cardiovascular and pulmonary complications of aneurysmal subarachnoid hemorrhage. Neurocritical care. 2011;15:257–269. [PubMed] [Google Scholar]

38. Garrett MC, Komotar RJ, Starke RM, Doshi D, Otten ML, Connolly ES. Elevated troponin levels are predictive of mortality in surgical intracerebral hemorrhage patients. Neurocrit Care. 2010;12:199–203. [PubMed] [Google Scholar]

39. Di Angelantonio E, Fiorelli M, Toni D, Sacchetti ML, Lorenzano S, Falcou A, Ciarla MV, Suppa M, Bonanni L, Bertazzoni G, Aguglia F, Argentino C. Prognostic significance of admission levels of troponin i in patients with acute ischaemic stroke. Journal of neurology, neurosurgery, and psychiatry. 2005;76:76–81. [PMC free article] [PubMed] [Google Scholar]

40. Cushman M, Judd SE, Howard VJ, Kissela B, Gutierrez OM, Jenny NS, Ahmed A, Thacker EL, Zakai NA. N-terminal pro-b-type natriuretic peptide and stroke risk: The reasons for geographic and racial differences in stroke cohort. Stroke; a journal of cerebral circulation. 2014;45:1646–1650. [PMC free article] [PubMed] [Google Scholar]

41. Krause T, Werner K, Fiebach JB, Villringer K, Piper SK, Haeusler KG, Endres M, Scheitz JF, Nolte CH. Stroke in right dorsal anterior insular cortex is related to myocardial injury. Ann Neurol. 2017;81:502–511. [PubMed] [Google Scholar]

42. Nigro N, Wildi K, Mueller C, Schuetz P, Mueller B, Fluri F, Christ-Crain M, Katan M. Bnp but not s-ctnln is associated with cardioembolic aetiology and predicts short and long term prognosis after cerebrovascular events. PloS one. 2014;9:e102704. [PMC free article] [PubMed] [Google Scholar]

43. Yip HK, Sun CK, Chang LT, Chen MC, Liou CW. Time course and prognostic value of plasma levels of n-terminal pro-brain natriuretic peptide in patients after ischemic stroke. Circulation journal : official journal of the Japanese Circulation Society. 2006;70:447–452. [PubMed] [Google Scholar]

44. Etgen T, Baum H, Sander K, Sander D. Cardiac troponins and n-terminal pro-brain natriuretic peptide in acute ischemic stroke do not relate to clinical prognosis. Stroke; a journal of cerebral circulation. 2005;36:270–275. [PubMed] [Google Scholar]

45. Tung P, Kopelnik A, Banki N, Ong K, Ko N, Lawton MT, Gress D, Drew B, Foster E, Parmley W, Zaroff J. Predictors of neurocardiogenic injury after subarachnoid hemorrhage. Stroke. 2004;35:548–551. [PubMed] [Google Scholar]

46. Jauch EC, Saver JL, Adams HP, Jr, Bruno A, Connors JJ, Demaerschalk BM, Khatri P, McMullan PW, Jr, Qureshi AI, Rosenfield K, Scott PA, Summers DR, Wang DZ, Wintermark M, Yonas H. Guidelines for the early management of patients with acute ischemic stroke: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke. 2013;44:870–947. [PubMed] [Google Scholar]

47. Billman GE. The lf/hf ratio does not accurately measure cardiac sympatho-vagal balance. Frontiers in Physiology. 2013;4:26. [PMC free article] [PubMed] [Google Scholar]

48. Papaioannou V, Pneumatikos I, Maglaveras N. Association of heart rate variability and inflammatory response in patients with cardiovascular diseases: Current strengths and limitations. Frontiers in Physiology. 2013;4:174. [PMC free article] [PubMed] [Google Scholar]

49. Korpelainen JT, Sotaniemi KA, Huikuri HV, Myllya VV. Abnormal heart rate variability as a manifestation of autonomic dysfunction in hemispheric brain infarction. Stroke. 1996;27:2059–2063. [PubMed] [Google Scholar]

50. Korpelainen JT, Sotaniemi KA, Mäkikallio A, Huikuri HV, Myllylä VV. Dynamic behavior of heart rate in ischemic stroke. Stroke. 1999;30:1008–1013. [PubMed] [Google Scholar]

51. Chen WL, Huang CH, Chen JH, Tai HC, Chang SH, Wang YC. Ecg abnormalities predict neurogenic pulmonary edema in patients with subarachnoid hemorrhage. Am J Emerg Med. 2016;34:79–82. [PubMed] [Google Scholar]

52. Colivicchi F, Bassi A, Santini M, Caltagirone C. Cardiac autonomic derangement and arrhythmias in right-sided stroke with insular involvement. Stroke. 2004;35:2094–2098. [PubMed] [Google Scholar]

53. Naver HK, Blomstrand C, Wallin BG. Reduced heart rate variability after right-sided stroke. Stroke. 1996;27:247–251. [PubMed] [Google Scholar]

54. Loubinoux I, Kronenberg G, Endres M, Schumann-Bard P, Freret T, Filipkowski RK, Kaczmarek L, Popa-Wagner A. Post-stroke depression: Mechanisms, translation and therapy. Journal of Cellular and Molecular Medicine. 2012;16:1961–1969. [PMC free article] [PubMed] [Google Scholar]

55. Hachinski V. Post-stroke depression, not to be underestimated. Lancet. 1999;353:1728. [PubMed] [Google Scholar]

56. Rosmond R, Bjorntorp P. The hypothalamic-pituitary-adrenal axis activity as a predictor of cardiovascular disease, type 2 diabetes and stroke. Journal of internal medicine. 2000;247:188–197. [PubMed] [Google Scholar]

57. Whitnall MH. Regulation of the hypothalamic corticotropin-releasing hormone neurosecretory system. Prog Neurobiol. 1993;40:573–629. [PubMed] [Google Scholar]

58. Christensen H, Boysen G, Johannesen HH. Serum-cortisol reflects severity and mortality in acute stroke. J Neurol Sci. 2004;217:175–180. [PubMed] [Google Scholar]

59. Barugh AJ, Gray P, Shenkin SD, MacLullich AM, Mead GE. Cortisol levels and the severity and outcomes of acute stroke: A systematic review. J Neurol. 2014;261:533–545. [PMC free article] [PubMed] [Google Scholar]

60. Melville KI, Blum B, Shister HE, Silver MD. Cardiac ischemic changes and arrhythmias induced by hypothalamic stimulation. The American journal of cardiology. 1963;12:781–791. [PubMed] [Google Scholar]

61. Jia S, Xia Q, Zhang B, Wang L. Involvement of the paraventricular nucleus in the occurrence of arrhythmias in middle cerebral artery occlusion rats. Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association. 2015;24:844–851. [PubMed] [Google Scholar]

62. Infanger DW, Cao X, Butler SD, Burmeister MA, Zhou Y, Stupinski JA, Sharma RV, Davisson RL. Silencing nox4 in the paraventricular nucleus improves myocardial infarction-induced cardiac dysfunction by attenuating sympathoexcitation and periinfarct apoptosis. Circ Res. 2010;106:1763–1774. [PMC free article] [PubMed] [Google Scholar]

63. Fassbender K, Schmidt R, Mossner R, Daffertshofer M, Hennerici M. Pattern of activation of the hypothalamic-pituitary-adrenal axis in acute stroke Relation to acute confusional state, extent of brain damage, and clinical outcome. Stroke; a journal of cerebral circulation. 1994;25:1105–1108. [PubMed] [Google Scholar]

64. Samuels MA. Neurogenic heart disease: A unifying hypothesis. Am J Cardiol. 1987;60:15j–19j. [PubMed] [Google Scholar]

65. Schomig A. Catecholamines in myocardial ischemia Systemic and cardiac release. Circulation. 1990;82:Ii13–22. [PubMed] [Google Scholar]

66. Mertes PM, Carteaux JP, Jaboin Y, Pinelli G, el Abassi K, Dopff C, Atkinson J, Villemot JP, Burlet C, Boulange M. Estimation of myocardial interstitial norepinephrine release after brain death using cardiac microdialysis. Transplantation. 1994;57:371–377. [PubMed] [Google Scholar]

67. Jacob WA, Van Bogaert A, De Groodt-Lasseel MH. Myocardial ultrastructure and haemodynamic reactions during experimental subarachnoid haemorrhage. Journal of molecular and cellular cardiology. 1972;4:287–298. [PubMed] [Google Scholar]

68. Costa VM, Carvalho F, Bastos ML, Carvalho RA, Carvalho M, Remiao F. Contribution of catecholamine reactive intermediates and oxidative stress to the pathologic features of heart diseases. Current medicinal chemistry. 2011;18:2272–2314. [PubMed] [Google Scholar]

69. Eitel I, von Knobelsdorff-Brenkenhoff F, Bernhardt P, et al. Clinical characteristics and cardiovascular magnetic resonance findings in stress (takotsubo) cardiomyopathy. JAMA. 2011;306:277–286. [PubMed] [Google Scholar]

70. Nef HM, Mollmann H, Hilpert P, Troidl C, Voss S, Rolf A, Behrens CB, Weber M, Hamm CW, Elsasser A. Activated cell survival cascade protects cardiomyocytes from cell death in tako-tsubo cardiomyopathy. Eur J Heart Fail. 2009;11:758–764. [PubMed] [Google Scholar]

71. Hachinski VC, Smith KE, Silver MD, Gibson CJ, Ciriello J. Acute myocardial and plasma catecholamine changes in experimental stroke. Stroke. 1986;17:387–390. [PubMed] [Google Scholar]

72. Weinberg SJ, Fuster JM. Electrocardiographic changes produced by localized hypothalamic stimulations*† Annals of Internal Medicine. 1960;53:332–341. [PubMed] [Google Scholar]

73. Cruickshank JM, Neil-Dwyer G, Stott AW. Possible role of catecholamines, corticosteroids, and potassium in production of electrocardiographic abnormalities associated with subarachnoid haemorrhage. British Heart Journal. 1974;36:697–706. [PMC free article] [PubMed] [Google Scholar]

74. Moss RL, Fitzsimons DP, Ralphe JC. Cardiac mybp-c regulates the rate and force of contraction in mammalian myocardium. Circ Res. 2015;116:183–192. [PMC free article] [PubMed] [Google Scholar]

75. Saini HK, Tripathi ON, Zhang S, Elimban V, Dhalla NS. Involvement of na+/ca2+ exchanger in catecholamine-induced increase in intracellular calcium in cardiomyocytes. American journal of physiology. Heart and circulatory physiology. 2006;290:H373–380. [PubMed] [Google Scholar]

76. Hunt D, Gore I. Myocardial lesions following experimental intracranial hemorrhage: Prevention with propranolol. American heart journal. 1972;83:232–236. [PubMed] [Google Scholar]

77. Madias JE. What is the recurrence rate of takotsubo syndrome in patients treated with beta-blockers and angiotensin converting enzyme inhibitors/angiotensin receptor blockers? International journal of cardiology. 2016;219:394–395. [PubMed] [Google Scholar]

78. Tahsili-Fahadan P, Geocadin RG. Heart-brain axis: Effects of neurologic injury on cardiovascular function. Circ Res. 2017;120:559–572. [PubMed] [Google Scholar]

79. Hall RE, Livingston RB, Bloor CM. Orbital cortical influences on cardiovascular dynamics and myocardial structure in conscious monkeys. J Neurosurg. 1977;46:648–653. [PubMed] [Google Scholar]

80. Soros P, Hachinski V. Cardiovascular and neurological causes of sudden death after ischaemic stroke. The Lancet. Neurology. 2012;11:179–188. [PubMed] [Google Scholar]

81. Sander D, Winbeck K, Klingelhofer J, Etgen T, Conrad B. Prognostic relevance of pathological sympathetic activation after acute thromboembolic stroke. Neurology. 2001;57:833–838. [PubMed] [Google Scholar]

82. Ozdemir O, Hachinski V. Brain lateralization and sudden death: Its role in the neurogenic heart syndrome. Journal of the neurological sciences. 2008;268:6–11. [PubMed] [Google Scholar]

83. Min J, Farooq MU, Greenberg E, Aloka F, Bhatt A, Kassab M, Morgan JP, Majid A. Cardiac dysfunction after left permanent cerebral focal ischemia: The brain and heart connection. Stroke. 2009;40:2560–2563. [PMC free article] [PubMed] [Google Scholar]

84. Christensen H, Boysen G, Christensen AF, Johannesen HH. Insular lesions, ecg abnormalities, and outcome in acute stroke. Journal of neurology, neurosurgery, and psychiatry. 2005;76:269–271. [PMC free article] [PubMed] [Google Scholar]

85. Laowattana S, Zeger SL, Lima JA, Goodman SN, Wittstein IS, Oppenheimer SM. Left insular stroke is associated with adverse cardiac outcome. Neurology. 2006;66:477–483. discussion 463. [PubMed] [Google Scholar]

86. Algra A, Gates PC, Fox AJ, Hachinski V, Barnett HJ. Side of brain infarction and long-term risk of sudden death in patients with symptomatic carotid disease. Stroke; a journal of cerebral circulation. 2003;34:2871–2875. [PubMed] [Google Scholar]

87. Masuda T, Sato K, Yamamoto S, Matsuyama N, Shimohama T, Matsunaga A, Obuchi S, Shiba Y, Shimizu S, Izumi T. Sympathetic nervous activity and myocardial damage immediately after subarachnoid hemorrhage in a unique animal model. Stroke; a journal of cerebral circulation. 2002;33:1671–1676. [PubMed] [Google Scholar]

88. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood-brain barrier. Neurobiol Dis. 2010;37:13–25. [PubMed] [Google Scholar]

89. Sandoval KE, Witt KA. Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiology of Disease. 2008;32:200–219. [PubMed] [Google Scholar]

90. Varatharaj A, Galea I. The blood-brain barrier in systemic inflammation. Brain, Behavior, and Immunity. 2017;60:1–12. [PubMed] [Google Scholar]

91. Merino JG, Latour LL, Tso A, Lee KY, Kang DW, Davis LA, Lazar RM, Horvath KA, Corso PJ, Warach S. Blood-brain barrier disruption after cardiac surgery. AJNR. American journal of neuroradiology. 2013;34:518–523. [PMC free article] [PubMed] [Google Scholar]

92. Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: Role of inflammatory cells. J Leukoc Biol. 2010;87:779–789. [PMC free article] [PubMed] [Google Scholar]

93. Iadecola C, Anrather J. The immunology of stroke: From mechanisms to translation. Nat Med. 2011;17:796–808. [PMC free article] [PubMed] [Google Scholar]

94. Gauberti M, Montagne A, Quenault A, Vivien D. Molecular magnetic resonance imaging of brain-immune interactions. Front Cell Neurosci. 2014;8:389. [PMC free article] [PubMed] [Google Scholar]

95. Doll DN, Barr TL, Simpkins JW. Cytokines: Their role in stroke and potential use as biomarkers and therapeutic targets. Aging and Disease. 2014;5:294–306. [PMC free article] [PubMed] [Google Scholar]

96. Dickens AM, Tovar-y-Romo LB, Yoo S-W, Trout AL, Bae M, Kanmogne M, Megra B, Williams DW, Witwer KW, Gacias M, Tabatadze N, Cole RN, Casaccia P, Berman JW, Anthony DC, Haughey NJ. Astrocyte-shed extracellular vesicles regulate the peripheral leukocyte response to inflammatory brain lesions. Science Signaling. 2017:10. [PMC free article] [PubMed] [Google Scholar]

97. Emsley HC, Smith CJ, Gavin CM, Georgiou RF, Vail A, Barberan EM, Hallenbeck JM, del Zoppo GJ, Rothwell NJ, Tyrrell PJ, Hopkins SJ. An early and sustained peripheral inflammatory response in acute ischaemic stroke: Relationships with infection and atherosclerosis. J Neuroimmunol. 2003;139:93–101. [PubMed] [Google Scholar]

98. Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E, Gerloff C, Tolosa E, Magnus T. Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke. 2009;40:1849–1857. [PubMed] [Google Scholar]

99. Liesz A, Zhou W, Mracsko E, Karcher S, Bauer H, Schwarting S, Sun L, Bruder D, Stegemann S, Cerwenka A, Sommer C, Dalpke AH, Veltkamp R. Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain. 2011;134:704–720. [PubMed] [Google Scholar]

100. Yilmaz G, Granger DN. Leukocyte recruitment and ischemic brain injury. Neuromolecular Med. 2010;12:193–204. [PMC free article] [PubMed] [Google Scholar]

101. An C, Shi Y, Li P, Hu X, Gan Y, Stetler RA, Leak RK, Gao Y, Sun BL, Zheng P, Chen J. Molecular dialogs between the ischemic brain and the peripheral immune system: Dualistic roles in injury and repair. Prog Neurobiol. 2014;115:6–24. [PMC free article] [PubMed] [Google Scholar]

102. Offner H, Subramanian S, Parker SM, Afentoulis ME, Vandenbark AA, Hurn PD. Experimental stroke induces massive, rapid activation of the peripheral immune system. J Cereb Blood Flow Metab. 2006;26:654–665. [PubMed] [Google Scholar]

103. Adams V, Linke A, Wisloff U, Doring C, Erbs S, Krankel N, Witt CC, Labeit S, Muller-Werdan U, Schuler G, Hambrecht R. Myocardial expression of murf-1 and mafbx after induction of chronic heart failure: Effect on myocardial contractility. Cardiovasc Res. 2007;73:120–129. [PubMed] [Google Scholar]

104. Ismahil MA, Hamid T, Bansal SS, Patel B, Kingery JR, Prabhu SD. Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: Critical importance of the cardiosplenic axis. Circ Res. 2014;114:266–282. [PMC free article] [PubMed] [Google Scholar]

105. Offner H, Subramanian S, Parker SM, Wang C, Afentoulis ME, Lewis A, Vandenbark AA, Hurn PD. Splenic atrophy in experimental stroke is accompanied by increased regulatory t cells and circulating macrophages. Journal of immunology (Baltimore, Md. : 1950) 2006;176:6523–6531. [PubMed] [Google Scholar]

106. Shichita T, Hasegawa E, Kimura A, Morita R, Sakaguchi R, Takada I, Sekiya T, Ooboshi H, Kitazono T, Yanagawa T, Ishii T, Takahashi H, Mori S, Nishibori M, Kuroda K, Akira S, Miyake K, Yoshimura A. Peroxiredoxin family proteins are key initiators of post-ischemic inflammation in the brain. Nat Med. 2012;18:911–917. [PubMed] [Google Scholar]

107. Becker K. Autoimmune responses to brain following stroke. Transl. Stroke Res. 2012;3:310–317. [PMC free article] [PubMed] [Google Scholar]

108. Marsh BJ, Williams-Karnesky RL, Stenzel-Poore MP. Toll-like receptor signaling in endogenous neuroprotection and stroke. Neuroscience. 2009;158:1007–1020. [PMC free article] [PubMed] [Google Scholar]

109. Becker KJ, Kindrick DL, Lester MP, Shea C, Ye ZC. Sensitization to brain antigens after stroke is augmented by lipopolysaccharide. J Cereb Blood Flow Metab. 2005;25:1634–1644. [PMC free article] [PubMed] [Google Scholar]

110. Dabbagh K, Lewis DB. Toll-like receptors and t-helper-1/t-helper-2 responses. Current opinion in infectious diseases. 2003;16:199–204. [PubMed] [Google Scholar]

111. Becker KJ, Kalil AJ, Tanzi P, Zierath DK, Savos AV, Gee JM, Hadwin J, Carter KT, Shibata D, Cain KC. Autoimmune responses to brain following stroke are associated with worse outcome. Stroke; a journal of cerebral circulation. 2011;42:2763–2769. [PMC free article] [PubMed] [Google Scholar]

112. Mann DL. Innate immunity and the failing heart: The cytokine hypothesis revisited. Circulation research. 2015;116:1254–1268. [PMC free article] [PubMed] [Google Scholar]

113. Rustenhoven J, Aalderink M, Scotter EL, Oldfield RL, Bergin PS, Mee EW, Graham ES, Faull RL, Curtis MA, Park TI, Dragunow M. Tgf-beta1 regulates human brain pericyte inflammatory processes involved in neurovasculature function. J Neuroinflammation. 2016;13:37. [PMC free article] [PubMed] [Google Scholar]

114. Viereck J, Bang C, Foinquinos A, Thum T. Regulatory rnas and paracrine networks in the heart. Cardiovasc Res. 2014;102:290–301. [PubMed] [Google Scholar]

115. Vahidy FS, Parsha KN, Rahbar MH, Lee M, Bui TT, Nguyen C, Barreto AD, Bambhroliya AB, Sahota P, Yang B, Aronowski J, Savitz SI. Acute splenic responses in patients with ischemic stroke and intracerebral hemorrhage. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism. 2016;36:1012–1021. [PMC free article] [PubMed] [Google Scholar]

116. Yoshimoto Y, Tanaka Y, Hoya K. Acute systemic inflammatory response syndrome in subarachnoid hemorrhage. Stroke; a journal of cerebral circulation. 2001;32:1989–1993. [PubMed] [Google Scholar]

117. Dhar R, Diringer MN. The burden of the systemic inflammatory response predicts vasospasm and outcome after subarachnoid hemorrhage. Neurocritical care. 2008;8:404–412. [PMC free article] [PubMed] [Google Scholar]

118. Yang L, Kong Y, Ren H, Li M, Wei CJ, Shi E, Jin WN, Hao J, Vandenbark AA, Offner H. Upregulation of cd74 and its potential association with disease severity in subjects with ischemic stroke. Neurochem Int. 2016 [PMC free article] [PubMed] [Google Scholar]

119. Tsujioka H, Imanishi T, Ikejima H, Kuroi A, Takarada S, Tanimoto T, Kitabata H, Okochi K, Arita Y, Ishibashi K, Komukai K, Kataiwa H, Nakamura N, Hirata K, Tanaka A, Akasaka T. Impact of heterogeneity of human peripheral blood monocyte subsets on myocardial salvage in patients with primary acute myocardial infarction. J Am Coll Cardiol. 2009;54:130–138. [PubMed] [Google Scholar]

120. Winklewski PJ, Radkowski M, Demkow U. Cross-talk between the inflammatory response, sympathetic activation and pulmonary infection in the ischemic stroke. J Neuroinflammation. 2014;11:213. [PMC free article] [PubMed] [Google Scholar]

121. van der Bilt IA, Vendeville JP, van de Hoef TP, Begieneman MP, Lagrand WK, Kros JM, Wilde AA, Rinkel GJ, Niessen HW. Myocarditis in patients with subarachnoid hemorrhage: A histopathologic study. Journal of critical care. 2016;32:196–200. [PubMed] [Google Scholar]

122. Johnson JD, Campisi J, Sharkey CM, Kennedy SL, Nickerson M, Greenwood BN, Fleshner M. Catecholamines mediate stress-induced increases in peripheral and central inflammatory cytokines. Neuroscience. 2005;135:1295–1307. [PubMed] [Google Scholar]

123. Tracey KJ. The inflammatory reflex. Nature. 2002;420:853–859. [PubMed] [Google Scholar]

124. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000;405:458–462. [PubMed] [Google Scholar]

125. Kelly JR, Kennedy PJ, Cryan JF, Dinan TG, Clarke G, Hyland NP. Breaking down the barriers: The gut microbiome, intestinal permeability and stress-related psychiatric disorders. Frontiers in Cellular Neuroscience. 2015;9:392. [PMC free article] [PubMed] [Google Scholar]

126. Nagatomo Y, Wilson Tang WH. Intersections between microbiome and heart failure: Revisiting the gut hypothesis. Journal of cardiac failure. 2015;21:973–980. [PMC free article] [PubMed] [Google Scholar]

127. Adrie C, Parlato M, Salmi L, Adib-Conquy M, Bical O, Deleuze P, Fitting C, Cavaillon JM, Monchi M. Bacterial translocation and plasma cytokines during transcatheter and open-heart aortic valve implantation. Shock (Augusta, Ga.) 2015;43:62–67. [PubMed] [Google Scholar]

128. Sun J, Wang F, Ling Z, Yu X, Chen W, Li H, Jin J, Pang M, Zhang H, Yu J, Liu J. Clostridium butyricum attenuates cerebral ischemia/reperfusion injury in diabetic mice via modulation of gut microbiota. Brain Research. 2016;1642:180–188. [PubMed] [Google Scholar]

129. Bercik P, Collins SM, Verdu EF. Microbes and the gut-brain axis. Neurogastroenterology & Motility. 2012;24:405–413. [PubMed] [Google Scholar]

130. Benakis C, Brea D, Caballero S, Faraco G, Moore J, Murphy M, Sita G, Racchumi G, Ling L, Pamer EG, Iadecola C, Anrather J. Commensal microbiota affects ischemic stroke outcome by regulating intestinal γδt cells. Nature medicine. 2016;22:516–523. [PMC free article] [PubMed] [Google Scholar]

131. Singh V, Roth S, Llovera G, Sadler R, Garzetti D, Stecher B, Dichgans M, Liesz A. Microbiota dysbiosis controls the neuroinflammatory response after stroke. The Journal of neuroscience : the official journal of the Society for Neuroscience. 2016;36:7428–7440. [PMC free article] [PubMed] [Google Scholar]

132. Yin J, Liao SX, He Y, Wang S, Xia GH, Liu FT, Zhu JJ, You C, Chen Q, Zhou L, Pan SY, Zhou HW. Dysbiosis of gut microbiota with reduced trimethylamine-oxide level in patients with large artery atherosclerotic stroke or transient ischemic attack. Journal of the American Heart Association. 2015;4:1–12. [PMC free article] [PubMed] [Google Scholar]

133. Winek K, Engel O, Koduah P, Heimesaat MM, Fischer A, Bereswill S, Dames C, Kershaw O, Gruber AD, Curato C, Oyama N, Meisel C, Meisel A, Dirnagl U. Depletion of cultivatable gut microbiota by broad-spectrum antibiotic pretreatment worsens outcome after murine stroke. Stroke; a Journal of Cerebral Circulation. 2016;47:1354–1363. [PMC free article] [PubMed] [Google Scholar]

134. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, DuGar B, Feldstein AE, Britt EB, Fu X, Chung Y-M, Wu Y, Schauer P, Smith JD, Allayee H, Tang WHW, DiDonato JA, Lusis AJ, Hazen SL. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57–63. [PMC free article] [PubMed] [Google Scholar]

135. Crapser J, Ritzel R, Verma R, Venna VR, Liu F, Chauhan A, Koellhoffer E, Patel A, Ricker A, Maas K, Graf J, McCullough LD. Ischemic stroke induces gut permeability and enhances bacterial translocation leading to sepsis in aged mice. Aging. 2016;8:1049–1063. [PMC free article] [PubMed] [Google Scholar]

136. Yamashiro K, Tanaka R, Urabe T, Ueno Y, Yamashiro Y, Nomoto K, Takahashi T, Tsuji H, Asahara T, Hattori N. Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke. PloS one. 2017;12:e0171521. [PMC free article] [PubMed] [Google Scholar]

137. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY. Metabolites produced by commensal bacteria promote peripheral regulatory t-cell generation. Nature. 2013;504:451–455. [PMC free article] [PubMed] [Google Scholar]

138. Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, Sartor RB, McIntyre TM, Silverstein RL, Tang WH, DiDonato JA, Brown JM, Lusis AJ, Hazen SL. Gut microbial metabolite tmao enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165:111–124. [PMC free article] [PubMed] [Google Scholar]

139. Li XS, Obeid S, Klingenberg R, Gencer B, Mach F, Raber L, Windecker S, Rodondi N, Nanchen D, Muller O, Miranda MX, Matter CM, Wu Y, Li L, Wang Z, Alamri HS, Gogonea V, Chung YM, Tang WH, Hazen SL, Luscher TF. Gut microbiota-dependent trimethylamine n-oxide in acute coronary syndromes: A prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J. 2017;38:814–824. [PMC free article] [PubMed] [Google Scholar]

140. Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol. 2013;200:373–383. [PMC free article] [PubMed] [Google Scholar]

141. Blann A, Shantsila E, Shantsila A. Microparticles and arterial disease. Seminars in thrombosis and hemostasis. 2009;35:488–496. [PubMed] [Google Scholar]

142. Martinez MC, Tual-Chalot S, Leonetti D, Andriantsitohaina R. Microparticles: Targets and tools in cardiovascular disease. Trends in pharmacological sciences. 2011;32:659–665. [PubMed] [Google Scholar]

143. Lackner P, Dietmann A, Beer R, Fischer M, Broessner G, Helbok R, Marxgut J, Pfausler B, Schmutzhard E. Cellular microparticles as a marker for cerebral vasospasm in spontaneous subarachnoid hemorrhage. Stroke; a journal of cerebral circulation. 2010;41:2353–2357. [PubMed] [Google Scholar]

144. Huang M, Hu YY, Dong XQ. High concentrations of procoagulant microparticles in the cerebrospinal fluid and peripheral blood of patients with acute basal ganglia hemorrhage are associated with poor outcome. Surgical neurology. 2009;72:481–489. discussion 489. [PubMed] [Google Scholar]

145. Mesri M, Altieri DC. Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a jnk1 signaling pathway. The Journal of biological chemistry. 1999;274:23111–23118. [PubMed] [Google Scholar]

146. Schoch B, Regel JP, Wichert M, Gasser T, Volbracht L, Stolke D. Analysis of intrathecal interleukin-6 as a potential predictive factor for vasospasm in subarachnoid hemorrhage. Neurosurgery. 2007;60:828–836. discussion 828–836. [PubMed] [Google Scholar]

147. Amabile N, Guerin AP, Leroyer A, Mallat Z, Nguyen C, Boddaert J, London GM, Tedgui A, Boulanger CM. Circulating endothelial microparticles are associated with vascular dysfunction in patients with end-stage renal failure. Journal of the American Society of Nephrology : JASN. 2005;16:3381–3388. [PubMed] [Google Scholar]

148. Agouni A, Lagrue-Lak-Hal AH, Ducluzeau PH, Mostefai HA, Draunet-Busson C, Leftheriotis G, Heymes C, Martinez MC, Andriantsitohaina R. Endothelial dysfunction caused by circulating microparticles from patients with metabolic syndrome. The American journal of pathology. 2008;173:1210–1219. [PMC free article] [PubMed] [Google Scholar]

149. Boulanger CM, Scoazec A, Ebrahimian T, Henry P, Mathieu E, Tedgui A, Mallat Z. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation. 2001;104:2649–2652. [PubMed] [Google Scholar]

150. Sanborn MR, Thom SR, Bohman LE, Stein SC, Levine JM, Milovanova T, Maloney-Wilensky E, Frangos S, Kumar MA. Temporal dynamics of microparticle elevation following subarachnoid hemorrhage. Journal of neurosurgery. 2012;117:579–586. [PubMed] [Google Scholar]

151. Boettinger S, Lackner P. Cellular microparticles in subarachnoid hemorrhage. Translational stroke research. 2015;6:342–344. [PubMed] [Google Scholar]

152. Sinauridze EI, Kireev DA, Popenko NY, Pichugin AV, Panteleev MA, Krymskaya OV, Ataullakhanov FI. Platelet microparticle membranes have 50- to 100-fold higher specific procoagulant activity than activated platelets. Thrombosis and haemostasis. 2007;97:425–434. [PubMed] [Google Scholar]

153. Horn P, Erkilet G, Veulemans V, Kropil P, Schurgers L, Zeus T, Heiss C, Kelm M, Westenfeld R. Microparticle-induced coagulation relates to coronary artery atherosclerosis in severe aortic valve stenosis. PloS one. 2016;11:e0151499. [PMC free article] [PubMed] [Google Scholar]

154. Varon D, Haion Y, Brill A, Leker R. Cell-driven angiogenesis and neurogenesis after stroke is regulated by platelet’s microparticles. Blood. 2008;112:1899–1899. [Google Scholar]

155. Porro C, Trotta T, Panaro MA. Microvesicles in the brain: Biomarker, messenger or mediator? Journal of neuroimmunology. 2015;288:70–78. [PubMed] [Google Scholar]

156. Bianco F, Pravettoni E, Colombo A, Schenk U, Moller T, Matteoli M, Verderio C. Astrocyte-derived atp induces vesicle shedding and il-1 beta release from microglia. Journal of immunology. 2005;174:7268–7277. [PubMed] [Google Scholar]

157. Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L, Menna E, Saglietti L, Schuchman EH, Furlan R, Clementi E, Matteoli M, Verderio C. Acid sphingomyelinase activity triggers microparticle release from glial cells. The EMBO journal. 2009;28:1043–1054. [PMC free article] [PubMed] [Google Scholar]

158. Tian Y, Salsbery B, Wang M, Yuan H, Yang J, Zhao Z, Wu X, Zhang Y, Konkle BA, Thiagarajan P, Li M, Zhang J, Dong JF. Brain-derived microparticles induce systemic coagulation in a murine model of traumatic brain injury. Blood. 2015;125:2151–2159. [PMC free article] [PubMed] [Google Scholar]

159. Zhao Z, Wang M, Tian Y, Hilton T, Salsbery B, Zhou EZ, Wu X, Thiagarajan P, Boilard E, Li M, Zhang J, Dong JF. Cardiolipin-mediated procoagulant activity of mitochondria contributes to traumatic brain injury-associated coagulopathy in mice. Blood. 2016;127:2763–2772. [PMC free article] [PubMed] [Google Scholar]

160. Chen J, Venkat P, Zacharek A, Chopp M. Neurorestorative therapy for stroke. Front Hum Neurosci. 2014;8:382. [PMC free article] [PubMed] [Google Scholar]

161. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foa R, Schliwka J, Fuchs U, Novosel A, Muller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T. A mammalian microrna expression atlas based on small rna library sequencing. Cell. 2007;129:1401–1414. [PMC free article] [PubMed] [Google Scholar]

162. Tan KS, Armugam A, Sepramaniam S, Lim KY, Setyowati KD, Wang CW, Jeyaseelan K. Expression profile of micrornas in young stroke patients. PloS one. 2009;4:e7689. [PMC free article] [PubMed] [Google Scholar]

163. Wang S, Aurora AB, Johnson BA, Qi X, McAnally J, Hill JA, Richardson JA, Bassel-Duby R, Olson EN. The endothelial-specific microrna mir-126 governs vascular integrity and angiogenesis. Developmental cell. 2008;15:261–271. [PMC free article] [PubMed] [Google Scholar]

164. Long G, Wang F, Li H, Yin Z, Sandip C, Lou Y, Wang Y, Chen C, Wang DW. Circulating mir-30a, mir-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurology. 2013;13:1–10. [PMC free article] [PubMed] [Google Scholar]

165. Qiang L, Hong L, Ningfu W, Huaihong C, Jing W. Expression of mir-126 and mir-508-5p in endothelial progenitor cells is associated with the prognosis of chronic heart failure patients. International journal of cardiology. 2013;168:2082–2088. [PubMed] [Google Scholar]

166. Long G, Wang F, Duan Q, Chen F, Yang S, Gong W, Wang Y, Chen C, Wang DW. Human circulating microrna-1 and microrna-126 as potential novel indicators for acute myocardial infarction. Int J Biol Sci. 2012;8:811–818. [PMC free article] [PubMed] [Google Scholar]

167. De Rosa S, Fichtlscherer S, Lehmann R, Assmus B, Dimmeler S, Zeiher AM. Transcoronary concentration gradients of circulating micrornas. Circulation. 2011;124:1936–1944. [PubMed] [Google Scholar]

168. Chen J, Cui C, Yang X, Xu J, Venkat P, Zacharek A, Yu P, Chopp M. Mir-126 affects brain-heart interaction after cerebral ischemic stroke. Transl. Stroke Res. 2017:1–12. [PMC free article] [PubMed] [Google Scholar]

169. Dharap A, Bowen K, Place R, Li LC, Vemuganti R. Transient focal ischemia induces extensive temporal changes in rat cerebral micrornaome. J Cereb Blood Flow Metab. 2009;29:675–687. [PMC free article] [PubMed] [Google Scholar]

170. Climent M, Quintavalle M, Miragoli M, Chen J, Condorelli G, Elia L. Tgfbeta triggers mir-143/145 transfer from smooth muscle cells to endothelial cells, thereby modulating vessel stabilization. Circulation research. 2015;116:1753–1764. [PubMed] [Google Scholar]

171. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, Weber M, Hamm CW, Roxe T, Muller-Ardogan M, Bonauer A, Zeiher AM, Dimmeler S. Circulating micrornas in patients with coronary artery disease. Circ Res. 2010;107:677–684. [PubMed] [Google Scholar]

172. van der Bilt I, Hasan D, van denBrink R, Cramer MJ, van der Jagt M, van Kooten F, Meertens J, van den Berg M, Groen R, Ten Cate F, Kamp O, Gotte M, Horn J, Groeneveld J, Vandertop P, Algra A, Visser F, Wilde A, Rinkel G, Investigators S. Cardiac dysfunction after aneurysmal subarachnoid hemorrhage: Relationship with outcome. Neurology. 2014;82:351–358. [PubMed] [Google Scholar]

173. Tanabe M, Crago EA, Suffoletto MS, Hravnak M, Frangiskakis JM, Kassam AB, Horowitz MB, Gorcsan J., 3rd Relation of elevation in cardiac troponin i to clinical severity, cardiac dysfunction, and pulmonary congestion in patients with subarachnoid hemorrhage. The American journal of cardiology. 2008;102:1545–1550. [PMC free article] [PubMed] [Google Scholar]

174. Wybraniec MTM-SK, Kryzch L. Neurocardiogenic injury in subarachnoid hemorrhage: A wide spectrum of catecholamin-mediated brain-heart interactions. Cardiol J. 2014;21:220–228. [PubMed] [Google Scholar]

175. Seo JY, Lee KB, Lee JG, Kim JS, Roh H, Ahn MY, Park BW, Hyon MS. Implication of left ventricular diastolic dysfunction in cryptogenic ischemic stroke. Stroke; a journal of cerebral circulation. 2014;45:2757–2761. [PubMed] [Google Scholar]

176. Christensen H, Fogh Christensen A, Boysen G. Abnormalities on ecg and telemetry predict stroke outcome at 3 months. Journal of the neurological sciences. 2005;234:99–103. [PubMed] [Google Scholar]

177. Lane RD, Wallace JD, Petrosky PP, Schwartz GE, Gradman AH. Supraventricular tachycardia in patients with right hemisphere strokes. Stroke; a journal of cerebral circulation. 1992;23:362–366. [PubMed] [Google Scholar]

178. Naidech AM, Kreiter KT, Janjua N, Ostapkovich ND, Parra A, Commichau C, Fitzsimmons B-FM, Connolly ES, Mayer SA. Cardiac troponin elevation, cardiovascular morbidity, and outcome after subarachnoid hemorrhage. Circulation. 2005;112:2851–2856. [PubMed] [Google Scholar]

179. Banki N, Kopelnik A, Tung P, Lawton MT, Gress D, Drew B, Dae M, Foster E, Parmley W, Zaroff J. Prospective analysis of prevalence, distribution, and rate of recovery of left ventricular systolic dysfunction in patients with subarachnoid hemorrhage. Journal of neurosurgery. 2006;105:15–20. [PubMed] [Google Scholar]

180. Ahtarovski KA, Iversen KK, Christensen TE, Andersson H, Grande P, Holmvang L, Bang L, Hasbak P, Lonborg JT, Madsen PL, Engstrom T, Vejlstrup NG. Takotsubo cardiomyopathy, a two-stage recovery of left ventricular systolic and diastolic function as determined by cardiac magnetic resonance imaging. European heart journal cardiovascular Imaging. 2014;15:855–862. [PubMed] [Google Scholar]

181. Mayer SA, Lin J, Homma S, Solomon RA, Lennihan L, Sherman D, Fink ME, Beckford A, Klebanoff LM. Myocardial injury and left ventricular performance after subarachnoid hemorrhage. Stroke. 1999;30:780–786. [PubMed] [Google Scholar]

182. Oras J, Grivans C, Dalla K, Omerovic E, Rydenhag B, Ricksten SE, Seeman-Lodding H. High-sensitive troponin t and n-terminal pro b-type natriuretic peptide for early detection of stress-induced cardiomyopathy in patients with subarachnoid hemorrhage. Neurocritical care. 2015;23:233–242. [PubMed] [Google Scholar]

183. Sandhu R, Aronow WS, Rajdev A, Sukhija R, Amin H, D’Aquila K, Sangha A. Relation of cardiac troponin i levels with in-hospital mortality in patients with ischemic stroke, intracerebral hemorrhage, and subarachnoid hemorrhage. The American journal of cardiology. 2008;102:632–634. [PubMed] [Google Scholar]

184. Rost NS, Wolf PA, Kase CS, Kelly-Hayes M, Silbershatz H, Massaro JM, D’Agostino RB, Franzblau C, Wilson PW. Plasma concentration of c-reactive protein and risk of ischemic stroke and transient ischemic attack: The framingham study. Stroke; a journal of cerebral circulation. 2001;32:2575–2579. [PubMed] [Google Scholar]

185. Di Napoli M, Papa F, Bocola V. C-reactive protein in ischemic stroke: An independent prognostic factor. Stroke; a journal of cerebral circulation. 2001;32:917–924. [PubMed] [Google Scholar]

186. Ridker PM, Glynn RJ, Hennekens CH. C-reactive protein adds to the predictive value of total and hdl cholesterol in determining risk of first myocardial infarction. Circulation. 1998;97:2007–2011. [PubMed] [Google Scholar]

Brain-heart interaction: cardiac complications after stroke (2024)
Top Articles
Latest Posts
Article information

Author: Neely Ledner

Last Updated:

Views: 6108

Rating: 4.1 / 5 (42 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Neely Ledner

Birthday: 1998-06-09

Address: 443 Barrows Terrace, New Jodyberg, CO 57462-5329

Phone: +2433516856029

Job: Central Legal Facilitator

Hobby: Backpacking, Jogging, Magic, Driving, Macrame, Embroidery, Foraging

Introduction: My name is Neely Ledner, I am a bright, determined, beautiful, adventurous, adventurous, spotless, calm person who loves writing and wants to share my knowledge and understanding with you.